Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-27445989

RESUMO

Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2 (-/-)) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2 (-/-) mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2 (-/-) mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2 (-/-) mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2 (-/-) mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2 (-/-) mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2 (-/-) mice; and substantial MAT accumulation does not necessitate a proportional decrease in either bone mass or bone marrow cellularity.

2.
Proc Natl Acad Sci U S A ; 112(7): E700-9, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646418

RESUMO

Phosphatase and tensin homolog (PTEN) is a critical negative regulator of the phosphoinositide-3 kinase pathway, members of which play integral roles in natural killer (NK) cell development and function. However, the functions of PTEN in NK cell biology remain unknown. Here, we used an NK cell-specific PTEN-deletion mouse model to define the ramifications of intrinsic NK cell PTEN loss in vivo. In these mice, there was a significant defect in NK cell numbers in the bone marrow and peripheral organs despite increased proliferation and intact peripheral NK cell maturation. Unexpectedly, we observed a significant expansion of peripheral blood NK cells and the premature egress of NK cells from the bone marrow. The altered trafficking of NK cells from peripheral organs into the blood was due to selective hyperresponsiveness to the blood localizing chemokine S1P. To address the importance of this trafficking defect to NK cell immune responses, we investigated the ability of PTEN-deficient NK cells to traffic to a site of tumor challenge. PTEN-deficient NK cells were defective at migrating to distal tumor sites but were more effective at clearing tumors actively introduced into the peripheral blood. Collectively, these data identify PTEN as an essential regulator of NK cell localization in vivo during both homeostasis and malignancy.


Assuntos
Movimento Celular , Células Matadoras Naturais/imunologia , PTEN Fosfo-Hidrolase/fisiologia , Animais , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/fisiologia , Transdução de Sinais
3.
PLoS One ; 9(8): e104698, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25119105

RESUMO

Strategies to boost the numbers and functions of regulatory T cells (Tregs) are currently being tested as means to treat autoimmunity. While Tregs have been shown to be effective in this role, strategies to manipulate Tregs to effectively suppress later stages of ongoing diseases need to be established. In this study, we evaluated the ability of TGF-ß-induced Tregs (iTregs) specific for the major self-antigen in autoimmune gastritis to suppress established autoimmune gastritis in mice. When transferred into mice during later stages of disease, iTregs demethylated the Foxp3 promoter, maintained Foxp3 expression, and suppressed effector T cell proliferation. More importantly, these iTregs were effective at stopping disease progression. Untreated mice had high numbers of endogenous Tregs (enTregs) but these were unable to stop disease progression. In contrast, iTregs, were found in relatively low numbers in treated mice, yet were effective at stopping disease progression, suggesting qualitative differences in suppressor functions. We identified several inhibitory receptors (LAG-3, PD-1, GARP, and TNFR2), cytokines (TGF-ß1 and IL12p35), and transcription factors (IRF4 and Tbet) expressed at higher levels by iTregs compared to enTregs isolated form mice with ongoing disease, which likely accounts for superior suppressor ability in this disease model. These data support efforts to use iTregs in therapies to treat establish autoimmunity, and show that iTregs are more effective than enTregs at suppressing inflammation in this disease model.


Assuntos
Autoimunidade/imunologia , Gastrite/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Autoantígenos/imunologia , Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Citocinas/metabolismo , Citometria de Fluxo , Gastrite/prevenção & controle , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas , Linfócitos T Reguladores/classificação , Linfócitos T Reguladores/transplante , Fatores de Transcrição/metabolismo
4.
J Clin Invest ; 124(3): 1027-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24509084

RESUMO

Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype. Compared with mTregs in peripheral blood, cutaneous mTregs had unique cell surface marker expression and cytokine production. In normal human skin, mTregs preferentially localized to hair follicles and were more abundant in skin with high hair density. Sequence comparison of TCRs from conventional memory T helper cells and mTregs isolated from skin revealed little homology between the two cell populations, suggesting that they recognize different antigens. Under steady-state conditions, mTregs were nonmigratory and relatively unresponsive; however, in inflamed skin from psoriasis patients, mTregs expanded, were highly proliferative, and produced low levels of IL-17. Taken together, these results identify a subset of Tregs that stably resides in human skin and suggest that these cells are qualitatively defective in inflammatory skin disease.


Assuntos
Folículo Piloso/patologia , Linfócitos T Reguladores/metabolismo , Adulto , Idoso , Animais , Antígenos CD/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/metabolismo , Folículo Piloso/imunologia , Humanos , Memória Imunológica , Interleucina-17/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Fenótipo , Psoríase/imunologia , Psoríase/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CCR7/metabolismo , Pele/imunologia , Linfócitos T Reguladores/imunologia , Adulto Jovem
5.
Trends Immunol ; 35(1): 32-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24210164

RESUMO

Hematopoietic stem cells (HSCs) reside in specialized microenvironments (niches) in the bone marrow. The stem cell niche is thought to provide signals that support key HSC properties, including self-renewal capacity and long-term multilineage repopulation ability. The stromal cells that comprise the stem cell niche and the signals that they generate that support HSC function are the subjects of intense investigation. Here, we review the complex and diverse stromal cell populations that reside in the bone marrow and examine their contribution to HSC maintenance. We highlight recent data suggesting that perivascular chemokine CXC ligand (CXCL)12-expressing mesenchymal progenitors and endothelial cells are key cellular components of the stem cell niche in the bone marrow.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Medula Óssea/fisiologia , Caderinas/metabolismo , Linhagem da Célula , Microambiente Celular , Quimiocina CXCL12/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Hipóxia , Células-Tronco Mesenquimais/citologia , Nicho de Células-Tronco
6.
J Vis Exp ; (66): e3697, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22951544

RESUMO

Graft-versus-host disease (GVHD) is the limiting barrier to the broad use of bone marrow transplant as a curative therapy for a variety of hematological deficiencies. GVHD is caused by mature alloreactive T cells present in the bone marrow graft that are infused into the recipient and cause damage to host organs. However, in mice, T cells must be added to the bone marrow inoculum to cause GVHD. Although extensive work has been done to characterize T cell responses post transplant, bioluminescent imaging technology is a non-invasive method to monitor T cell trafficking patterns in vivo. Following lethal irradiation, recipient mice are transplanted with bone marrow cells and splenocytes from donor mice. T cell subsets from L2G85.B6 (transgenic mice that constitutively express luciferase) are included in the transplant. By only transplanting certain T cell subsets, one is able to track specific T cell subsets in vivo, and based on their location, develop hypotheses regarding the role of specific T cell subsets in promoting GVHD at various time points. At predetermined intervals post transplant, recipient mice are imaged using a Xenogen IVIS CCD camera. Light intensity can be quantified using Living Image software to generate a pseudo-color image based on photon intensity (red = high intensity, violet = low intensity). Between 4-7 days post transplant, recipient mice begin to show clinical signs of GVHD. Cooke et al. developed a scoring system to quantitate disease progression based on the recipient mice fur texture, skin integrity, activity, weight loss, and posture. Mice are scored daily, and euthanized when they become moribund. Recipient mice generally become moribund 20-30 days post transplant. Murine models are valuable tools for studying the immunology of GVHD. Selectively transplanting particular T cell subsets allows for careful identification of the roles each subset plays. Non-invasively tracking T cell responses in vivo adds another layer of value to murine GVHD models.


Assuntos
Transplante de Medula Óssea/imunologia , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Linfócitos T/imunologia , Animais , Transplante de Medula Óssea/efeitos adversos , Doença Enxerto-Hospedeiro/etiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Subpopulações de Linfócitos T/imunologia
7.
J Exp Med ; 209(10): 1713-22, S1-19, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-22966003

RESUMO

Foxp3(+) CD4(+) T helper cells called regulatory T (T reg) cells play a key role in controlling reactivity to self-antigens and onset of autoimmunity. T reg cells either arise in thymus and are called natural T reg (nT reg) cells or are generated in the periphery through induction of Foxp3 and are called inducible T reg (iT reg) cells. The relative contributions of iT reg cells and nT reg cells in peripheral tolerance remain unclear as a result of an inability to separate these two subsets of T reg cells. Using a combination of novel TCR transgenic mice with a defined self-antigen specificity and conventional mouse models, we demonstrate that a cell surface molecule, neuropilin-1 (Nrp-1), is expressed at high levels on nT reg cells and can be used to separate nT reg versus iT reg cells in certain physiological settings. In addition, iT reg cells generated through antigen delivery or converted under homeostatic conditions lack Nrp-1 expression. Nrp-1(lo) iT reg cells show similar suppressive activity to nT reg cells in controlling ongoing autoimmune responses under homeostatic conditions. In contrast, their activity might be compromised in certain lymphopenic settings. Collectively, our data show that Nrp-1 provides an excellent marker to distinguish distinct T reg subsets and will be useful in studying the role of nT reg versus iT reg cells in different disease settings.


Assuntos
Neuropilina-1/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Autoimunidade , Regulação da Expressão Gênica , Ativação Linfocitária/genética , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Neuropilina-1/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo
8.
PLoS One ; 6(7): e21968, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21779359

RESUMO

BACKGROUND: Graft-versus-host disease (GVHD) remains the main barrier to broader application of allogeneic hematopoietic stem cell transplantation (alloSCT) as a curative therapy for host malignancy. GVHD is mediated by allogeneic T cells directed against histocompatibility antigens expressed by host tissues. Based on previous studies, we postulated that the integrin CD103 is required for CD8-mediated GVHD, but not for graft-versus-tumor effects (GVT). METHODOLOGY/PRINCIPAL FINDINGS: We herein provide evidence in support of this hypothesis. To circumvent the potentially confounding influence of donor CD4 T cells, we developed an alloSCT model in which GVHD mortality is mediated by purified CD8 T cells. In this model, host-reactive CD8 T cells receive CD4 T cell help at the time of initial activation but not in the effector phase in which mature CD8 T effectors migrate into host tissues. We show that donor CD8 T cells from wild-type BALB/c mice primed to host alloantigens induce GVHD pathology and eliminate tumors of host origin in the absence of host CD4 T cells. Importantly, CD103 deficiency dramatically attenuated GVHD mortality, but had no detectable impact on the capacity to eliminate a tumor line of host origin. We provide evidence that CD103 is required for accumulation of donor CD8 T cells in the host intestinal epithelium but not in the tumor or host lymphoid compartments. Consistent with these data, CD103 was preferentially expressed by CD8 T cells infiltrating the host intestinal epithelium but not by those infiltrating the tumor, lamina propria, or lymphoid compartments. We further demonstrate that CD103 expression is not required for classic CD8 effector activities including cytokine production and cytotoxicity. CONCLUSIONS/SIGNIFICANCE: These data indicate that CD103 deficiency inhibits GVHD pathology while sparing anti-tumor effects mediated by CD8 T cells, identifying CD103 blockade as an improved strategy for GVHD prophylaxis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Efeito Enxerto vs Tumor/imunologia , Cadeias alfa de Integrinas/deficiência , Animais , Antígenos CD , Citometria de Fluxo , Isoantígenos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...